TensorFlow学习笔记03

来自于官方教程中的一个例子,使用梯度下降算法进行线性逼近

import tensorflow as tf

# Model parameters
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
# Model input and output
x = tf.placeholder(tf.float32)
linear_model = W*x + b
y = tf.placeholder(tf.float32)

# loss
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
# optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

# training data
x_train = [1, 2, 3, 4]
y_train = [0, -1, -2, -3]
# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
  sess.run(train, {x: x_train, y: y_train})

# evaluate training accuracy
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

训练集

x_train = [1, 2, 3, 4]
y_train = [0, -1, -2, -3]

使用梯度下降算法,步进0.01,求方差最小化

optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

结果

W: [-0.9999969] b: [ 0.99999082] loss: 5.69997e-11

发表评论

电子邮件地址不会被公开。 必填项已用*标注